
Page 1 of 33

Python

Chapter 1

Introduction to Python

1. What is Python?

Python is a dynamically typed, General Purpose Programming Language

that supports an object-oriented programming approach as well as a

functional programming approach.

Python is also an interpreted and high-level programming language.

It was created by Guido Van Rossum in 1989.

2. Features of Python:

 Python is simple and easy to understand.

 It is Interpreted and platform-independent which makes debugging
very easy.

 Python is an open-source programming language.

3. What is Python used for

 Python is a programming language that is used in AI and machine
learning to emulate human behavior and learn from prior data
without using hard coding.

 Python is used to create web applications.

 It is frequently used for data analysis and manipulation.

 It is sometimes used in game development, often with the help of
libraries like Pygame.

Page 2 of 33

Python First Program

Output

Python Comments

Comments are used to explain Python code and it can make the code more
readable and understandable. Comments are completely ignored and not

executed by code editors.

Types of Comments:

There are two types of comments.

 Single-Line Comments

 Multi-Line Comments

Single-Line Comments:

Single-line comments start with the hash symbol (#).

Example:

#This is a single line comment

print("Hello World!!")

Multi-Line Comments:

To write multi-line comments you can use (#) at each line.

Example:

#This is a

#multi line

#comment

print("Hello World!!")

print("Hello, World!")

Hello World!

Page 3 of 33

Chapter 2

Python Variables

Variables are containers that store information that can be manipulated
and referenced later by the programmer within the code.

Example:

name = "john" #type str

age = 22 #type int

Rules for Naming Variables

 Variable name must start with a letter or the underscore character

 Variable name can only contain alpha-numeric characters and
underscores (A-z, 0-9, and _)

 Variables are case sensitive.

 Variable name cannot start with a number.

Example:

Country = "india" #valid variable name

country = "australia" #valid variable name

_country = "japan" #valid variable name

5country = "singapore" #invalid variable name

$country = "russia" #invalid variable name

Local Variable:

A local variable is defined inside a function and can only be utilized within

that function.

Example:

def my_func():

 fruit = "Orange"

 print(fruit + " is a local variable.")

my_func()

Page 4 of 33

Output

Global Variable:

A global variable is created in the main body of the code and can be used

anywhere within the code.

Example:

Output

Python Data Types

Data types in Python represent the types of values that a variable can hold.

Python supports various built-in data types, including:

Numeric data Types

 int: 4, -6, 0

 float: 3.14, 2.0.

 complex 5 + 3i

Text data Type

 str: “Hello Python”

fruit = "Orange"

def my_func():

 print(fruit + " is a global variable.")

my_func()

Orange is a local variable.

Orange is a global variable.

Page 5 of 33

Boolean data Type

 Boolean data consists of True or False values.

Sequenced data Types

list: A list is an ordered collection of data elements separated by a comma

and enclosed within square brackets.

Example:

Output:

tuple:A tuple is an ordered collection of data elements separated by a comma

and enclosed within parentheses.

Example:

Output:

Mapped data:

dict: A dictionary is an unordered collection of data containing a key:value

pair.

Example:

list1 = ["Orange", "Mango", "Strawberry"]

print(list1)

['Orange', 'Mango', 'Strawberry']

tuple1 = ("Microsoft", "Google", "Facebook")

print(tuple1)

('Microsoft', 'Google', 'Facebook')

dict1 = {"name":"Rahul", "age":22}

print(dict1)

Page 6 of 33

Output:

Set data type:

Set is an unordered collection of unique items. The elements of sets are

separated by commas and enclosed in curly braces.

Example:

Output:

Python Numbers

In Python, numerical data types are classified into three types:

 int

 float

 complex

int

Integers are whole numbers, either positive or negative, with no decimal
points.

Output:

{'name': 'Rahul', 'age': 22}

set1 = {4, 8, 12, 5.2}

print(set1)

{4, 8, 12, 5.2}

x = 24

y = 100548

print(type(x))

print(type(y))

Page 7 of 33

Float

Floating-point numbers are real numbers with a decimal point.

 Output:

complex

Complex numbers are made up of both real and imaginary numbers.

 Output:

<class 'int'>

<class 'int'>

x = 2.34

y = 3.1

print(type(x))

print(type(y))

<class 'float'>

<class 'float'>

x = 6j

y = -6j

print(type(x))

print(type(y))

<class 'complex'>

<class 'complex'>

Page 8 of 33

Chapter 3
Python Operators

Python provides a variety of operators for performing operations on
variables and values.

Here's a list of different types of Python operators:

 Arithmetic Operators

 Assignment Operators

 Comparison Operators

 Logical Operators

 Bitwise Operators

 Identity operators

 Membership operators

Arithmetic Operators

Arithmetic Operators are used to perform mathematical operations.

Operator Name Example

+ Addition a+b

- Subtraction a-b

* Multiplication a*b

/ Division a/b

% Modulus a%b

** Exponentiation a**b

// Floor division a//b

Assignment Operators

Assignment operators are used to assign values to variables.

Operator Example

= a = 5;

+= a += 5;

Page 9 of 33

-= a -= 3;

*= a *= 2;

/= a /= 2;

%= a %= 2;

//= a //= 2;

Comparison Operators

Comparison operators are used to compare two values.

Operator Name Example

== Equal a==b

!= Not equal a!=b

> Greater than a>b

>= Greater than or equal to a>=b

< Less than a<>b

<= Less than or equal to a<=b

Logical Operators

Logical operators perform logical operations and return a boolean value.

Operator Name Example

&& AND x && y

|| OR x || y

! NOT !x

Bitwise Operators

Operator Name Example

& Bitwise AND a & b

| Bitwise OR a | b

~ Bitwise NOT ~a

<< Left shift b<<

Page 10 of 33

Operator Precedence in Python

Name Operator

Parenthesis ()

Exponential **

Multiply, divide, modulus, floor
division

*, /, %, //

Addition, subtraction +, -

Left shift and right shift operators <<, >>

Bitwise and &

Bitwise or and xor ^, |

Comparison operators <, >, >=, <=

Assignment operators =, %=, /=, //=, -=, +=, *= , **=

Logical operators and, or, not

Chapter 4

Python Strings
Python strings are a sequence of characters that are enclosed by double

quotes ("") or single quotes (' ').

Python String Operations

Compare Two Strings

We use the == operator to compare two strings.

Example:

Double Quotes

str1 = "Hello Python"

Single quotes

str2 = 'Hello Python'

str1 = "Hello Python"

str2 = "I love Python"

str3 = "Hello Python"

print(str1 == str2)

print(str1 == str3)

Page 11 of 33

Output:

String Concatenation

To concatenate, two or more strings you can use the + operator.

Example:

Output:

String Length

To find the length of a string, use the len() function.

Example:

Output:

String Methods

JavaScript has several built-in methods for manipulating strings.

upper()

The upper() method converts a string to upper case.

False

True

str1 = "Hello"

str2 = " World"

result = str1 + str2

print(result)

Hello World

str1 = "Hello Python"

print(len(str1))

12

Page 12 of 33

Example:

Output:

lower()

The lower() method converts a string to upper case.

Example:

Output:

strip()

The strip() method removes all white spaces before and after the string.

Example:

Output:

replace

The replace() method replaces a string with another string.

Example:

str1 = "Hello Python"

print(str1.upper())

HELLO PYTHON

str1 = "Hello Python"

print(str1.lower())

hello python

str1 = " Hello Python "

print(str1.strip)

Hello Python

str1 = "Hello Python"

print(str1.replace("Python", "World"))

Page 13 of 33

Output:

Chapter 5

Python Lists

A list is an ordered collection of data elements separated by a comma and

enclosed within square brackets. They store multiple items in a single

variable.

Example:

Output

Add List Items

There are three ways to add items to a list: append(), insert(), extend().

append()

To add an item to the end of the list, use the append() method.

Example:

Hello World

list1 = [20, 40, 60]

print(list1)

[20, 40, 60]

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.append("Blossom")

print(flowers)

Page 14 of 33

Output:

insert()

To insert a list item at a specific index, use the insert() method.

Example:

Output:

extend()

The extend() method adds an entire list to the existing list.

Example:

 Output:

Remove List Items

There are several ways to remove items from the list.

['Rose', 'Sunflower', 'Lotus', 'Blossom']

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.insert(2, "Blossom")

print(flowers)

['Rose', 'Sunflower', 'Blossom', 'Lotus']

flowers = ["Rose", "Sunflower", "Lotus"]

flowers2 = ["Blossom", "Tulip", "Jasmine"]

flowers.extend(flowers2)

print(flowers)

['Rose', 'Sunflower', 'Lotus', 'Blossom', 'Tulip', 'Jasmine']

Page 15 of 33

pop()

The pop() method removes the last item from the list if no index is

specified. If an index is provided, the item at that specific index is removed.

Example:

Output:

remove()

The remove() method removes specific item from the list.

Example:

Output:

List Methods

Python provides several built-in methods for dealing with lists.

sort()

The sort() method sorts the list in ascending order.

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.pop()

print(flowers)

['Rose', 'Sunflower']

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.remove("Sunflower")

print(flowers)

['Rose', 'Lotus']

Page 16 of 33

Example:

Output:

reverse()

The reverse() method reverses the order of the list.

Example:

Output:

index()

The index() method returns the index of the first occurrence of the list

item.

Example:

Output:

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.sort()

print(flowers)

['Lotus', 'Rose', 'Sunflower']

flowers = ["Rose", "Sunflower", "Lotus"]

flowers.reverse()

print(flowers)

['Sunflower', 'Lotus', 'Rose']

flowers = ["Rose", "Sunflower", "Lotus"]

print(flowers.index("Sunflower"))

1

Page 17 of 33

 Chapter 6

 Python Tuples

A tuple is an ordered collection of data elements separated by a comma

and enclosed within parentheses. They store multiple items in a single

variable. Tuples are unchangeable meaning we can not change them after

creation.

Example:

Output:

Tuple Methods

Python offers two built-in methods for dealing with tuples.

count()

The count() method returns the number of times the specified items

appears in the tuple.

Example:

Output:

colors = ("Red", "Blue", "White")

print(colors)

("Red", "Blue", "White")

colors = ("Red", "Blue", "White")

newtup = colors.count("White")

print(newtup)

1

Page 18 of 33

index()

The index() method returns the index of the first occurrence of the tuple

item.

Example:

Output:

 Chapter 7

 Python Sets

Sets are unordered collection of data items. They store multiple items in a

single variable. Sets items are separated by commas and enclosed within

curly braces{}.

Example:

Output:

Add set Items

To add a single item to a set use the add() method.

colors = ("Red", "Blue", "White")

newtup = colors.index("White")

print(newtup)

2

set1 = {2, 6, 14}

print(set1)

{2, 6, 14}

Page 19 of 33

Example:

Output:

Remove items from set

To remove an item from a set, use the remove() method.

Example:

Output:

Set Methods

Python provides several built-in methods for dealing with sets.

isdisjoint()

The isdisjoint() method checks if items of given set are present in

another set.

Example:

fruits = {"Apple", "Orange", "Mango"}

fruits.add("Banana")

print(fruits)

{'Banana', 'Orange', 'Mango', 'Apple'}

fruits = {"Apple", "Orange", "Mango"}

fruits.remove("Mango")

print(fruits)

{'Orange', 'Apple'}

fruits = {"Apple", "Orange", "Mango"}

fruits2 = {"Apple", "Orange", "Mango"}

print(fruits.isdisjoint(fruits2))

Page 20 of 33

Output:

issuperset()

The issuperset() method checks if all the items of a specified set are

present in the original set.

Example:

Output:

issubset()

The issubset() method checks if all the items of the original set are

present in the specified set.

Example:

Output:

False

fruits = {"Apple", "Orange", "Mango"}

fruits2 = {"Apple", "Mango"}

print(fruits.issuperset(fruits2))

True

fruits = {"Apple", "Orange", "Mango"}

fruits2 = {"Orange", "Mango"}

print(fruits2.issubset(fruits))

True

Page 21 of 33

 Chapter 8

 Python Dictionaries

Dictionaries are ordered collection of data items. Dictionaries items are

key-value pairs that are separated by commas and enclosed within curly

brackets {}.

Example:

Output:

Add Items to a Dictionary

Example:

Output:

details = {

 "name":"Rahul",

 "age":22,

 "canVote":True

}

print(details)

{'name': 'Rahul', 'age': 22, 'canVote': True}

details = {

 "name":"Rahul",

 "age":22,

 "canVote":True

}

details["DOB"] = 2003

print(details)

{'name': 'Rahul', 'age': 22, 'canVote': True, 'DOB': 2003}

Page 22 of 33

Remove Dictionary Items

There are several methods to remove items from a dictionary.

pop()

The pop() method removes the item with the provided key name.

Example:

Output:

clear()

The clear() method removes all the items from the dictionary.

Example:

Output:

details = {

 "name":"Rahul",

 "age":22,

 "canVote":True

}

details.pop("canVote")

print(details)

{'name': 'Rahul', 'age': 22}

details = {

 "name":"Rahul",

 "age":22,

 "canVote":True

}

details.clear()

print(details)

{}

Page 23 of 33

Chapter 9

Python Conditional Statements

There are four types of conditional statements in Python:

 The if statement

 The if-else statement

 The if…elif…else Statement

 The nested-if statement

If Statement

The if statement is used to execute a block of code if a given condition is
true.

Syntax:

Example:

Output:

If...else statement

The If...else statement is used to execute a block of code if a specified
condition is true and another block of code if the condition is false.

Syntax:

if condition:

 # block of code to be executed if the condition is true

number = 8

if (number > 5):

 print("Number is greater than 5")

Number is greater than 5

Page 24 of 33

Example:

Output:

if…elif…else Statement

Python's if-elif-else statement executes a block of code among multiple
possibilities.

Syntax:

Example:

if condition:

 # block of code to be executed if the condition is true

else:

 # block of code to be executed if the condition is false

number = 8

if (number > 5):

 print("Number is greater than 5")

else:

 print("Number is not greater than 5")

Number is greater than 5

if (condition1):

 # block of code to be executed if condition1 is true

elif (condition2):

 # block of code to be executed if the condition1 is false and

condition2 is true

else:

 # block of code to be executed if the condition1 is false and

condition2 is false

number = 10

if (number > 15):

 print("Number is greater than 15")

elif (number > 10):

 print("Number is greater than 10 but less than or equal to 15")

else:

 print("Number is equal to 10")

Page 25 of 33

Output:

Chapter 10

Python for & while Loop

for Loop

A for loop in Python is used to iterate over a sequence (e.g., a list, tuple,
or string) or any other iterable object. .

Example:

Output:

while Loop

While loops in Python are used to execute a block of code several times as

long as a condition is true.

Example:

x is equal to 10

companies = ["Google", "Facebook", "Microsoft"]

for i in companies:

 print(i)

Google

Facebook

Microsoft

number = 1

while (number <= 5):

 print(number)

 number = number + 1

Page 26 of 33

Output:

Chapter 11

Python Functions

A function is a block of code that executes a specific task when called. They
are defined with the def keyword followed by the function name, parentheses

(), and a colon.

Example:

Types of functions

There are two types of functions:

 built-in functions

 user-defined functions

built-in functions

These functions are pre-defined in python. Some examples of built-in

functions are:

len(), sum(), type(), range(), dict(), list(), tuple(),

set(), print(), etc.

1

2

3

4

5

def my_func():

 print("Hello World")

Page 27 of 33

user-defined functions

These are functions defined by the user to perform specific tasks.

Example:

Call a function

To call a function, use the function name followed by parenthesis

Example:

Output:

Function Arguments

Arguments are the inputs passed to the function.

Example:

Output:

def my_func(parameters):

 # block of code

def my_func():

 print("Hello World")

my_func()

Hello World

def my_func(fname, lname):

 print("Hello", fname, lname)

my_func("John", "Doe")

Hello John Doe

Page 28 of 33

Recursion

Recursion is a programming method that involves calling a function itself to

solve a problem.

Example:

Output:

Chapter 12

Python OOPS

OOPS stand for Object Oriented Programming System. It is a programming

paradigm that uses objects and classes in programming.

Class

A class is a blueprint for creating objects. It can be defined using the class
keyword, followed by the class name and a colon.

Example:

def fibonacci(n):

 if n == 1 or n == 2:

 return 1

 else:

 return fibonacci(n - 1) + fibonacci(n - 2)

print(fibonacci(10))

55

class Student:

 name = "Arka"

 age = 22

Page 29 of 33

Objects

An object is an instance of a class.

Example:

Output:

__init__ method

The __init__ method in Python is used to initialize objects of a class.

Example:

Output:

class Student:

 name = "Arka"

 age = 22

obj1 = Student()

print(obj1.name)

Arka

class Person:

 def __init__(self, name):

 self.name = name

 def greet(self):

 print('Hello, my name is', self.name)

p = Person('Sayan')

p.greet()

Hello, my name is Sayan

Page 30 of 33

self method

The self parameter is a reference to the current instance of the class, and is

used to access variables that belongs to the class.

Example:

Output:

Chapter 13

Python Modules

Python modules are python files that contain python code that we can use

within our python files.

Here are some popular python built-in modules:

datetime, json, math, random, statistics, tkinter,

turtle, etc.

class Details:

 name = "John"

 age = 25

 def desc(self):

 print("Hello my name is", self.name)

obj1 = Details()

obj1.desc()

Hello my name is John

Page 31 of 33

Math Module

Math Module consists of mathematical functions and constants. It is a built-in

module made for mathematical tasks.

Example:

Output:

Chapter 14

Python File Handling

File handling is a powerful tool that can be used to perform a wide range of

operations. Python supports file handling and allows users to handle files to

read and write and modify files.

Python File Open
Before performing any operation on the file like reading or writing, we need to

open the file.

There are various modes in which we can open files.

read (r): This mode opens the file for reading only.

write (w): This mode opens the file for writing only.

append (a): This mode opens the file for appending only.

import math

print(math.floor(0.6))

print(math.floor(1.4))

print(math.floor(5.3))

print(math.floor(-5.3))

0

1

5

-6

Page 32 of 33

create (x): This mode creates a file.

Example:

Create a File:

Creating a file is done using the create (x) mode.

Example:

Output:

Write onto a File

This method writes content onto a file.

Example:

Output:

Read a File

This method allows you to read the contents of the file.

Example:

f = open(filename, mode)

file = open("myfile.txt", "x")

A new empty file is created.

file = open("demofile.txt", "w")

file.write("This is an example of file creation.")

file.close

This is an example of file creation.

Page 33 of 33

Output:

Append a File:

This method appends content into a file.

Example:

Output:

file = open("demofile2.txt", "r")

print(file.read())

file.close

Hello, Welcome to this tutorial.

file = open("newFile.txt", "a")

file.write("This is an example of file appending.")

file.close

This is an example of file appending.

	Introduction to Python
	1. What is Python?
	2. Features of Python:
	3. What is Python used for

	Python Comments
	Chapter 2
	Python Variables
	Rules for Naming Variables

	Python Data Types
	Numeric data Types
	Text data Type
	Boolean data Type

	Python Numbers
	int
	Float
	complex

	Chapter 3
	Python Operators
	Arithmetic Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Operator Precedence in Python

	Python Strings
	Python String Operations
	Compare Two Strings
	String Concatenation
	String Length

	String Methods
	upper()
	lower()
	strip()
	replace

	Python Lists
	Add List Items
	append()
	insert()

	List Methods
	sort()
	reverse()
	index()

	Python Tuples
	Tuple Methods
	count()
	index()

	Python Sets
	Add set Items
	Remove items from set
	Set Methods
	isdisjoint()
	issuperset()
	issubset()

	Python Dictionaries
	Add Items to a Dictionary
	Remove Dictionary Items
	pop()
	clear()

	If Statement
	If...else statement
	if…elif…else Statement

	Python for & while Loop
	for Loop
	Python Functions
	Types of functions
	built-in functions
	user-defined functions
	Call a function
	Function Arguments
	Class
	Objects

	Math Module
	Python File Open

